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Abstract 

In a previous paper, a class of exact geodesics for the motion of a particle in a gravitational- 
monopole-prolate-quadrupole field was investigated, both in Newtonian mechanics and 
in general relativity. This paper consists of both an amplification of the analysis con- 
rained in the previous paper and an extension of the analysis to the case for negative 
quadrupole moment, which was not treated previously. The relativistic results are based 
on the monopoIe--quadrupole metric of Erez and Rosen, the Newtonian results on the 
monopole--quadrupole potential of Laplace. In the limit of vanishing quadrupole para- 
meter (q -, 0), the relativistic results reduce to those of the familiar Schwarzschild case; 
in the weak-field limit (rim ~ oo), the relativistic results reduce to those of the Newtonian 
case. The existence and stability thresholds in the relativistic case yield values that 
uniquely characterize the Erez-Rosen metric. 

1. Introduction 

In a previous paper (Armenti  and Havas, 1971; referred to hereafter as 
Paper I) a class of  exact solutions for the mot ion of  a particle in a gravitational- 
monopole-pro la te-quadrupolef ie ld  was investigated, both  in Newtonian 
mechanics and general relativity. This class o f  exact solutions consisted part ly 
o f  "circular noncoplanar  mot ions ,"  i.e., circular motions with constant angular 
velocity in planes parallel to the plane o f  symmetry  o f  the quadrupole;  the 
remainder consisted of  circular motions with constant  angular velocity in the 
plane o f  symmetry  of  the  qtmdrupote. The circular noncoplanar rr~otions 
exist only for positive quadrupole moments,  i.e., only for prolate quadrupole 
fields. Circular motions in the ptane of  symmetry  exist both  for negative as 
well as positive quadrupole moments,  although the former case was not  treated 
in Paper I (for an extended body,  negative quadrupote moment  corresponds to 
an oblate distr ibution of  mass). 

This paper consists bo th  o f  an amplification of  certain results for positive 
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quadrupole moment,  presented in Paper I, and an extension of  the analysis to 
the case for negative quadrupole moment.  

The calculations o f  this paper are based on an exact solution of  Einstein's 
vacuum field equations, the monopote-quadrupole metric o f  Erez and 
Rosen (1959). In Schwarzschild coordinates x ° = t, x 1 = r, x 2 = 0, x 3 = $, with 
units such that c = 1, it equals 

ds2=e2OdtZ-eZY-2¢[(  l+m2sin20'2;2 _ 2mr)_ dr + (r 2 - 2mr + mZsinaO)dO 21 

- - e - 2 O ( r  2 -- 2mr) sin 20d~b 2 (t .1) 

where $ and 3' are complicated functions depending on both r and 0 and 
involving both a mass and a quadrupole parameter, m and q. These are related 
to the familiar Newtonian parameters M and Q by m = GM and q = 15GQ/2m a. 

2. Existence of Circular Noncoplanar Motions 

As shown in Paper I, the relativistic analogs of  energy and angular momen- 
turn E and C, for a test particle executing circular noncoplanar motion in the 
gravitational field (t  .1) are given by 

E2 = [(r - m)(g + 3h) -g (m + 2@)]  e 2~ (2.1) 
(r - m)(g + 3h) - 2g(m + 2qh) 

and 

where 

C2 = g(r 2 - 2mr)(m + 2qh)2e -2~ 
q(g + 3h) [(r - m)(g + 3h) - 2g(rn + 2qh)] 

. [ 1 [3r 2 
g - - - 3 ( r - r n J [ 2 1 - - ~ - - ~ + 2 )  ln(1--2-~mr) 

and 

(2.2) 

m 

2(r 2 -  2mr) k m z m 

(2.4) 

In order for both E and C t o  be real and finite (in view of  the fact that q must 
here be positive), it is necessary that 

(r - m)(g + 3h) - 2g(m + 2qh) > 0 (2.5) 

From this it is apparent that the allowed values o f q  are bounded from above 
by a value 

_ l  [ (r - m)(g + 3h) ] 
qa 2h i  2g -- m (2.6) 

] 3 
- m ) /  (2 .3)  

] 
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In addi t ion ,  t rue noncop lanar  mot ions  require tha t  

sin20 < 1 (2.7) 

Now from equat ion (33) of  Paper I, a necessary condi t ion  for the existence 
of  circular noncoplanar  mot ions  in the field (1.1)  is 

sin 2 0 = S(r, q) -= m/q + 2h (2.8) 
g + 3 h  

From this condi t ion  and equa t ion  (2.7) one finds that  q is also bounded  from 
below, b y  a value 

m 
qb - (2.9) 

g + h  

Hence,  real circular noncoptanar  mot ions  exist on ly  for those values o f  q that  
satisfy 

qb < q  <qa (2.10) 

In Figure 1 we plot the "existence region" for circular noncop lanar  mot ions  
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Figure 1. Existence region in (q, r/m) plane for circuhr noncoplanar motion. CI : q = qa; 
C2: q = 5r2[3m2; C3: q = qb. Newtonian circular noncoplanar motions are possible in 
regions I and II. Relativistic circular noncoplanar motions are possible only in regions II 
and III. Neither theory permits such motions in region IV. For the Newtonian case, 
circular noncoplanar motions exist down to r = 0, q = 0; in the relativistic case, they exist 
only down to r = 2.4481m, q = 2.2544. 
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in the Erez-Rosen monopole-quadrupole field, that is, the region of the 
(q, r/m) plane defined by (2.t0). 

Also shown in Figure 1 and in certain other figures that follow are the 
results of the corresponding Newtonian calculations, which are based on the 
monopole-quadrupole potential 

GM GQ 
V = - - -  3 cos 2 0) 

r +2r  5'(t - 

The Newtonian case is straightforward; the details may be found in Armenti 
(t970). 

We see that there is an existence threshold value o fq  and a corresponding 
one for r below which circular noncoplanar motions do not exist, and whose 
values are determined by a simultaneous solution of equations (2.6) and (2.9). 
The results of  this solution, found numerically, have the values (see Paper I) 
q = qet = 2.2544 and r = ret = 2.4481m, and uniquely characterize the Erez- 
Rosen solution. 

For large values of rim we can make use of equations (2.6) and (2.9), 
together with equations.(37) and (38) of Paper I to obtain the approximate 
expressions 

and 

11 (2.11) 

0 
From these equations it is clear that in the (q, r/m) plane the existence region 
widens indefinitely with increasing rim. 

It is instructive to, consider the condition on the azimuth following from 
condition (2.10). If we solve for q in equation (2.8) and substitute that 
expression into (2.10) we obtain 

where 

J(r) < sin20 < 1 (2.13) 

J(r) =-g + 3h 1 + (r - m)~, +-3h) - 2gm (2.14) 

In Figure 2 we plot the existence region in the (sin 20, r/m) plane, i.e., the 
region defined by equation (2.13). Finally, in Figure 3 we plot the existence 
region in the (R, z) plane when R and z are "radial cylindrical coordinates" 
defined by R = r sin 0 and z = r cos 0. 
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Figure 2. Existence region in (sinZ0 ,r/m) plane for circular noncoplanar motion. 
Newtonian circular noncoplanar motions are possible in regions I and II. Relativistic 
circular noncoplanar motions are possible only in region II. Neither theory permits such 
motions in region III. The relativistic existence condition is defined by equation (2.13). 
The Newtonian existence minimum occurs at sin 2 0 = 2/5. The relativistic existence 
minimum approaches this value asymptotically as (r/m) ~ ~o. 

3. Exis tence  o f  6)'rcular Mo t ion  in the Plane o f  S y m m e t r y  

Circular motions exist in the plane o f  symmetry  for both  signs o f  the 
quadrupole moment .  The energy and angular momentum for a test particle 
moving in a circle with constant angular velocity in such a plane is given by  
(see Paper I) 

E 2 = (r - 2m + qh)e  2~ 
(3.1) 

r - 3m + 2qh 

and 
C2 = ( m  - q h ) ( r  2 - 2mr)e -z¢  (3.2) 

(r - 3rn + 2qh) 

Again, physical motions require an energy and angular momentum that  are 
bo th  real and finite. Hence, the existence criteria for circular mot ion  in the 
plane of  symmetry  (for both  signs of  q) become 

r - 3m + 2qh > 0 (3.3) 
and 

m - q h  > 0 (3.4) 

These equations provide, respectively, a lower and an upper  bound on the 
allowed values o f q .  In fact, the only circular motions that  can exist in the 
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Figure 3. Existence region in (R, z) plane for circular noncoplanar motion. Newtonian 
circular noncoplanar motions are possible in regions I and II. Relativistic circular non- 
coplanar motions are possible only in region II. Neither theory permits such motions in 
region III. Note that in the relativistic case smaller circles are possible outside the plane 
of symmetry than within. In fact, the smallest circles occur for z = -+ 1.20127m, with a 
radius R = 2.37704m, and with r = 2.66335m, sin 2 0 = 0.796554, and q = 4.99815. 

plane of  symmetry are those that satisfy 

_ _  < m  3m - r < q  (3.5) 
2h h 

In Figure 4 we plot the existence region for circular motion of a test particle 
in the plane of symmetry of the Erez-Rosen monopole-quadrupole field. 
This is, the region defined by  (3.5). 

4. Stability o f  Circular Noncoptanar Motions 

The stability of the motions whose existence was discussed in Section 2 is 
conveniently studied by means of the standard stability analysis based on the 
Lagrangian formalism (Whittaker, 1937). One finds a condition on the azimuth 
(Armenti, 1970) 

sin 2 0 > K(r, q) (4.1) 

where 

a + b - c  
K(r, q)  - d (4.2) 
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Figure 4. .Existence region in (q, r/m) plane for circular motion in the plane of  symmetry. 
In the Newtonian case, circular motions are poss~le  in regions I and II. For the relativistic 
case they exist only in region t. Neither theory permits such motions in region IIL 
Newtonian circular motions are possible in the  plane o f  symmetry for all r > 0 so long as 
q < 0 (oblate distribution of  mass), but  are possible only for r > (3q/5m2) 1/2 for q > 0 
(prolate distribution of  mass). For the relativistic case, smaller circles are possible in the 
plane of  symmetry for q > 0 than for q < 0; e.g., for 1 < q < 2 circles with r = 2m are 
possible. For q = 0, the smallest possible circle has a radins r = 3m, in agreement with the 
Schwarzschild result. C1: q = (3m - r)/2h; C2: q = m/h; C3: q = 5r2/3m 2. 

and  

a ~ 2g2(g  + 3 h ) 3 ( r  2 - 2 m r ) ( r  - m )  2 

b = q g 2 ( m / q  + 2h)  2 (g  + 3h){g(r  2 - 2mr)[3(r  - m)  + 2qg] - 3(g + 6 h ) ( r - m )  3} 

c -  2q2g3(m/q  + 2 h )  3 [g(r  2 - 2 m r )  + ( g  + 6 h ) ( r  - m )  2] 

d - (r - m)(g  + 3h)3{g2(r  2 - 2 m r )  [2( r  - m)  + 3qg] + (g2 + 6hg - 9 h 2 ) ( r  - rn)  3) 

(4 .3 )  
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It is clear then that, for a given q, <rely those circular noncoplanar motions 
with azimuth satisfying 

K(r, q) < sin20 < 1 (4.4) 

will be stable motions. In Figures 5a, 5b, 5c and 5d, we plot simultaneously 
equations (2.8) and (4.2) for four different values ofq. Also shown in these 
plots Ls the existence region defined by equation (2.13). We see that as q 

1 1 
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Figure 5. Relativistic stability minima for circular noncoplanar  m o t o n  for various values 
o f q .  Existence minima occur  at the  point  defined by J(r) = S(r, q) [see equat ions  (2.8) 
and (2 .14)] .  Stability minima occur at the  intersection o f  K(r, q) and S(r, q) [see 
equat ion (4 .2)] .  5a: For q = 12, there are no stable mot ions  since equat ion (4.4) is no t  
satisfied; 5b: For q = 25, the  point  of  intersection of  K(r, q) and S(r, q) falls just  inside 
the  allowed region and hence equat ion  (4.4) is satisfied; 5c, 5d: For q = 50 and q = 75, 
the point  o f  intersection falls well within the allowed region, and for these,  as well as 
larger values o f  q,  stable mot ions  always exist. 
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increases, the minimum value of  r for which stable motions occur continually 
increases, while the corresponding value of  sin 2 0 continually decreases. For 
some values o f q  (Fig. 5a) there is no rs2 (defined below) whose corresponding 
azimuth falls in the allowed range (4.4), and hence such a value of  q cannot 
lead to stable motion. 

We note (Fig. 5b) that a "stability threshold" occurs near q = 25. To 
investigate this matter further we consider the locus o f  points defined by  the 
intersection of  equations (2.5) and (4.2) for positive values o f  q; that is we 
consider solutions o f  the transcendental equation 

m/q + 2h 
g + 3h - K(r, q) (4.5) 

As may be seen from Figure 5, equation (4.5) has two solutions in r for each 
value o f q .  We will denote these by  rsl(q) and rs2(q), with rsl < rsz. It would 
appear at first glance that stable motions would then be possible in two distinct 
regions, namely, for 2m < r < rsl and for rs2 < r < rmax, with rmax(q) corres- 
ponding to sin20 = 1 (and being determined from m/q =g + h). It turns out, 
however (Figure 6), that for every value of  q, rsl(q) < rem(q), the existence 
minimum defined by equation (2.5). We see then that although the stability 
condition (4.4) is satisfied in the region 2m < r < rsl, circular noncoplanar 
solutions do not exist there. Hence, for each value o f q  we have at most one 
stable region, namely, that corresponding to 

rs2(q) < r < rmax(q) (4.6) 

rlm 
3.0 ] 

2.5" 

J 
rn (q) 

~0 
o ~ ~ ~ ~ ib 

, .q 

Figure 6. A weak stability condition for relativistic circular noncoplanar motion. The 
relativistic stability conditions allow for stable motions in the region 2m < r < rsl(q), but 
the relativistic existence conditions demand that r > rem(q ). Since rsl(q) is everywhere 
less than rein(q), this stability condition can never be satisfied and hence may be discarded. 
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Figure 7. Stability region in (q, r/m) plane for circular noncoplanar motion. In the 
relativistic case, stable circular noncoplanar motions are possible only in region I defined 
by rs2(q ) < r < rmax(q), while in the Newtonian case, stable circular noncoplanar 
motons are possible only in region II defined by (2q/15m2) 1/2 < r  < (3q/5m2). Regions 
I and II merge at the point r = 6.8481m, q = 78.1599. In the relativistic case, the condi- 
tion rs2(q) = rmax(q) defines a stability threshold with coordinates rst = 4.9061m and 
qst = 24.2333. In the Newtonian case, rst = qst =~0. 

In Figure 7 we plot the stability region in the (q, r/m) plane as defined by  
equation (4.6). We see that there is indeed a stability threshoM and that the 
threshold values (found numerically) are rst = 4.9061m and qst = 24.2333. 
No stable circular noncoplanar motions are possible below these values. The 
corresponding stability regions in the (sin 2 0, r/m) and (R, z) planes are given 
in Figures 8 and 9. 

5. Stability o f  Circular Motions in the Plane o f  Symmetry 

For circular motions in the plane of symmetry, the standard stability 
analysis (Whittaker, 1937) leads to the two conditions (Armenti,  1970) 

m -  q(g + h ) > O  

and 

(5.1) 

{2qh[9mqh + 8mr - 13m 2 - (r +qh)(r + 2qh)] 

+ 2m(r - 3m)(r - 2m) - (r 2 - 2mr) [m - q(g + h) ] )  > 0 

(5.2) 
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Figure 8. Stability region in (sin20, r/m) plane for circular noncoplanar motion. Stable 
relativistic motions are possible only in region I, while stable Newtonian motions are 
possibte both in regions I and IL Neither theory allows for stable motions in region ItI. 
The Newtonian stability minimum occurs at sin 20 = 8/15. The relativistic minimum 
approaches this value asymptotically as (r/m) ~ ~o 

Viewed as inequali t ies  on  q ,  these equat ions  take the  forms 

m 
q - < 0  ( 5 , 3 )  

g + h  

and 

q3 +a2q2  +alq  +ao < 0  (5.4) 

8 
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Figure 9. Stability region in (R, z) plane for circular noncoplanar motion. Stable 
relativistic motions are possible only in region I, while stable Newtoinan motions are 
possible in both regions I and II. Neither theory permits stable motions in region III. 
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where 

A R M E N T I  

_ 3 ( r -  3m) 
a 2 =  2h (5.5) 

-[2h(8mr - 13m 2 - r 2) + (r 2 - 2mr) (g + h)] 
a l  = 4h 3 (5.6) 

(5.10) 

(5.11) 
and 

t -~(ala2 - 3ao) - z-lq7 a2 3 (5.12) 
For our case 

and 
_ -m(r  - 2m)(r  - 6m) 

ao = 4h 3 (5.7) 

We will let qo(r), q l(r), and q2(r) denote the roots of  the cubic expression 
(5.4) and will choose these labels in such a way that  q o(r) < q 1 (r)  < q 2 (r) at 
r = 2m. Then in order for equation (5.4) to be satisfied, q must satisfy either 

q < qo (5.8) 
o r  

q l  < q  < q 2  (5.9) 

The nature of  the three roots is determined by  the sign of  the quantity 

A ~ S  3 + t  2 

where 
S -~ -~a I --  { a 2  2 

and 

- [ ( r -  m)2h + (r 2 -2mr)(g  + h)] 
s = 12h3 (5.13) 

- ( r 2 - 2 m r ) [  3m)(g +h)  ] 
t - -8-~ m + (r - 2h (5.14) 

It follows f rom equations (5.10), (5.13), and (5.14) that A < 0 for all r > 2m 
and that  therefore the roots o f  the cubic expression (5.4) are real and distinct 
for all r > 2m. 

The values of  the three roots are given explicitly by  (Barrington, 1956) 

qk = (Xk - ~a2), k = 0, 1, 2 (5.15) 

with 
Xk = 2 ( - s ) l / 2 c o s  [~¢ + ( k  + 1)]Tr] (5.16) 

cos¢ - t / ( -sa)  I n  (5.17) 

and with s and t given by equations (5.13) and (5.14). At r = 2m, the roots 
qk =k. 
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Figure 10. Stability region in (q, r/m) plane for circular motion in the plane of symmetry. 
In the relativistic case, stable circular motions are possible only in region I defined by 
ql < q < m/(g + h), for both signs of q. In the Newtonian case, stable circular motions are 
possible both in regions I and II; the precise conditions being r > (--q/5m 2) 1/2 for q < 0, 
and r > (3q/5m2) 1/2 for q > 0. Neither theory allows for stable motions in the plane of 
symmetry in regions III and IV. In the relativistic case we find that for q = 0, the stability 
condition becomes r > 6m, in agreement with the Schwarzschild result. 

The stability criteria for circular motions in the plane of symmetry are 
satisfied in the region defined by equations (5.3), (5.8), and (5.9). This region 
is shown in Figure 10. We note First that the region defined by equation (5.8) 
must be ruled out since circular motions do not exist for q < q o .  In addition, 
equations (5.3) and (5.9) together rule out the region m/(g + h) < q <q2 .  
Hence the stability region for circular motion in the plane of symmetry of an 
Erez-Rosen monopole-quadrupole field is defined by 

m ql <q  < - -  (s.18) 
g + h  

It is a remarkable fact that the curves q = (3m - r)/2h, q = m/g + h), and 
q = q l  all intersect at the same point,  thereby defining a stability threshoM 
for circular motion in the plane of symmetry. It is even more remarkable that 
the coordinates of this point are precisely the threshold values of r and q 
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obtained for the existence of  circular noncoplanar motion in Section 2, viz., 
r = ret and q = qet. To see how this comes about, we note that the r co- 
ordinate o f  the point of  intersection o f  the curves q = (3m - r)/2h and 
q = m/(g + h) is determined by a solution o f  the equation 

(3m - r)g = (r - m)h (5.19) 

When this equation is satisfied, however, we find from equations (5.14)-(5.17) 
that t = x 1 = 0 and that therefore q 1 = (3m - r)/2h. Hence the three curves do 
indeed intersect at the same point. 

To see that the coordinates of  the point o f  intersection are in fact r = ret 
and q = qet, we recall that the existence threshold values o f t  and q were 
defined by a simultaneous solution o f  equations (2.6) and (2.9). After equating 
these two expressions and rearranging the result, we immediately regain 
equation (5.19). Thus we see that for positive q, stable circular motions in the 
plane of  symmetry occur only for r > ret. For q = 0, we find from (5.1) and 
(5.2) (and see from Figure 10) that r > 6m, the familiar condition for the 
stability o f  circular motion in the Schwarzschild field (Goldhammer, 1961). 
For q ~ 1, it follows that 

< 
valid for both signs o f q .  

F o r q  large and negative, it follows from equation (5.18) that stable motions 
are possible only for 

c l 1 r > ( ~ 5 ]  167 m 1 + 3 - - ~ \ - ~ - ]  (5.21) 

Finally, for q large and positive, we have from equation (5.18) that q must be 
less than a value given by  

m 
q - (5.22) 

g + h  

However, we recall that (5.22) also defines the maximum possible r for 
circular noncoplanar motions [see the discussion following equation (4.5)]. 
It is obvious from Figure 10 that these two limits coincide exactly for all 
q > qet, that is, for all q for which circular noncoplanar motions exist. For 
_ _ o o  < q < qet, the minimum stable r is given by r(q 1). 

6. Discussion 

Circular motions with constant angular velocity in planes parallel to the 
plane o f  symmetry o f  the quadrupole exist only for positive quadrupole 
moments. It was shown that for all r greater than an existence-threshold value 
ret = 2.4481 m, an ever-widening raflge of  q values exists for which circular 
noncoplanar motions are possible. When r = ret this range shrinks t o  a point 
with the single allowed value q = qet = 2.2544. The ranges r < ret, and 
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q < qet are inaccessible as they require an orbital velocity exceeding the local 
velocity of light. Such restrictions do not occur in the Newtonian case. In 
both Newtonian mechanics and general relativity, the azimuth 0 of  the circt~r 
motions must exceed a minimum value. For the Newtonian case this is given 
by 0 = sin-' (2/5) 1/2. The corresponding restriction in general relativity 
involves an r-dependent condition which is everywhere more restrictive than 
the Newtonian one (Figure 2). The radius of  the smallest noncoplanar circle 
is Rmi n = 2.37704m, which is smaller than the smallest radial polar coordinate 
r = ret (Figure 3). 

tn the general relativistic case, stability thresholds for r and q were obtained 
having the values rst = 4,9061rn, and qst = 24.2333. In addition, the relativistic 
stability condition on the azimuth is again more restrictive everywhere than 
the Newtonian one 0 > 0 rain = sin -1 (8/15) 1/2 (Figure 8). 

A treatment of the existence and stability of  circular motions in the plane 
of symmetry showed the existence of a stability region (Figure 10) which, 
unlike the existence region (Figure 4), widened continuously from a point, 
thereby defining stability thresholds on r and q. Remarkably enough, the 
stability-threshold values of r and q for motions in the plane of symmetry are 
precisely the existence-threshold values r = ret and q = qet obtained for 
circular noncoplanar motion. For q = 0, the existence and stability conditions 
reduce to r > 3m and r > 6m, respectively, both of which are in agreement 
with the Schwarzschild results (Figure 4 and 10). 

In both Newtonian and general relativistic Cases, stable orbits of  smaller 
radius are possible outside the plane of symmetry than within. In fact, in both 
theories, orbits outside the plane are stable up to a maximum value of  the 
radius reached at the plane of symmetry, which coincides exactly with the 
minimum radius for stable circular orbits within that plane. 
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